Send to

Choose Destination
See comment in PubMed Commons below
Cancer Genomics Proteomics. 2012 Jan;9(1):1-13.

Comparative proteomic analysis of a cytosolic fraction from β3 integrin-deficient cells.

Author information

  • 1Biology Department,College of Science and Mathematics, California State University-Fresno, 2555 E. Ramon Ave., M/S SB73, Fresno, CA 93740, USA.


Integrins are heterodimeric transmembrane receptors involved in sensing and transmitting informational cues from the extracellular environment to the cell. This study explored sub-proteome changes in response to elimination of the β3 integrin using a knockout murine model. Cleavable isotope-coded affinity tagging (cICAT) in combination with sub-cellular fractionation, multiple dimensions of separation and tandem mass spectrometry (MS/MS) were used to characterize differentially expressed proteins among β3 integrin(-/-) (β3(-/-)) mouse embryonic fibroblasts and isogenic wild-type (WT) controls. From a cytosolic protein fraction, 48 proteins were identified, in which expression differed by > 1.5-fold. Predominant ontological groups included actin-binding/cytoskeletal proteins and protease/protease inhibitors. Interestingly, β3 integrin expression was inversely correlated with expression of cathepsin B, a lysosomal cysteine protease, as its expression was greater by over 3.5-fold in the β3(-/-) cells. This inverse correlation was also observed in stable heterologous cells transfected with β3 integrin, where the intracellular expression and activity of cathepsin B was lower compared to control cells. Our data suggests that the composition of the cellular proteome is influenced by integrin expression patterns and reveals a strong functional relationship between β3 integrin and cathepsin B.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center