Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2012 Mar;33(9):2600-7. doi: 10.1016/j.biomaterials.2011.12.026. Epub 2011 Dec 30.

In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor.

Author information

Department of Chemistry and Institute of BioPhysio Sensor Technology, Pusan National University, Busan 609-735, Republic of Korea.


A highly sensitive in vivo biosensor for glutathione disulfide (GSSG) is developed using covalently immobilized-glutathione reductase (GR) and -β-nicotinamide adenine dinucleotide phosphate (NADPH) on gold nanoparticles deposited on poly[2,2':5',2″-terthiophene-3'-(p-benzoic acid)] (polyTTBA). The fabricated biosensor was characterized with SEM, TEM, XPS, and QCM. Analytical parameters affecting the biosensor performance were optimized in terms of applied potential, NADPH:GR ratio, temperature, and pH. A linear calibration plot is obtained using chronoamperometry in the dynamic range between 0.1 μM and 2.5 mM of GSSG, with a detection limit of 12.5 ± 0.5 nM. The developed biosensor is applied to detect GSSG in a real plasma sample. A microbiosensor was applied to detect the in vivo GSSG concentration to monitor the oxidative stress caused by diquat and t-butyl hydroperoxide. The results obtained are reliable, implying a promising approach for a GSSG biosensor in clinical diagnostics and oxidative stress monitoring.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center