Format

Send to

Choose Destination
See comment in PubMed Commons below
Immunity. 2012 Jan 27;36(1):68-78. doi: 10.1016/j.immuni.2011.12.007. Epub 2011 Dec 28.

Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development.

Author information

1
Trudeau Institute, Saranac Lake, NY 12983, USA.

Abstract

CD8(+) T cells undergo major metabolic changes upon activation, but how metabolism influences the establishment of long-lived memory T cells after infection remains a key question. We have shown here that CD8(+) memory T cells, but not CD8(+) T effector (Teff) cells, possessed substantial mitochondrial spare respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response to increased stress or work and as such is associated with cellular survival. We found that interleukin-15 (IL-15), a cytokine critical for CD8(+) memory T cells, regulated SRC and oxidative metabolism by promoting mitochondrial biogenesis and expression of carnitine palmitoyl transferase (CPT1a), a metabolic enzyme that controls the rate-limiting step to mitochondrial fatty acid oxidation (FAO). These results show how cytokines control the bioenergetic stability of memory T cells after infection by regulating mitochondrial metabolism.

PMID:
22206904
PMCID:
PMC3269311
DOI:
10.1016/j.immuni.2011.12.007
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center