Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta. 2012 Jun;235(6):1341-53. doi: 10.1007/s00425-011-1578-6. Epub 2011 Dec 29.

Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase.

Author information

1
Institute of Plant Sciences, ARO, the Volcani Center, 50250 Bet Dagan, Israel. iditgin@volcani.agri.gov.il

Abstract

Potato steroidal glycoalkaloids (SGAs) are toxic secondary metabolites whose total content in tubers must be regulated. SGAs are biosynthesized by the sterol branch of the mevalonic acid/isoprenoid pathway. In a previous study, we showed a correlation between SGA levels and the abundance of transcript coding for HMG-CoA reductase 1 (HMG1) and squalene synthase 1 (SQS1) in potato tissues and potato genotypes varying in SGA content. Here, Solanum tuberosum cv. Desirée (low SGA producer) was transformed with a gene construct containing the coding region of either HMG1 or SQS1 of Solanum chacoense Bitt. clone 8380-1, a high SGA producer. SGA levels in transgenic HMG-plants were either greater than (in eight of 14 plants) or no different from untransformed controls, whereas only four of 12 SQS-transgenics had greater SGA levels than control, as determined by HPLC. Quantitative real-time PCR was used to estimate relative steady-state transcript levels of isoprenoid-, steroid-, and SGA-related genes in leaves of the transgenic plants compared to nontransgenic controls. HMG-transgenic plants exhibited increased transcript accumulation of SQS1, sterol C24-methyltransferase type1 (SMT1), and solanidine glycosyltransferase 2 (SGT2), whereas SQS-transgenic plants, had consistently lower transcript levels of HMG1 and variable SMT1 and SGT2 transcript abundance among different transgenics. HMG-transgenic plants exhibited changes in transcript accumulation for some sterol biosynthetic genes as well. Taken together, the data suggest coordinated regulation of isoprenoid metabolism and SGA secondary metabolism.

PMID:
22205426
DOI:
10.1007/s00425-011-1578-6
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center