Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E164-73. doi: 10.1073/pnas.1119348109. Epub 2011 Dec 27.

Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems.

Author information

The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.


The medial (MHb) and lateral (LHb) habenulae are a small group of nuclei that regulate the activity of monoaminergic neurons. Disruptions to these nuclei lead to deficits in a range of cognitive and motor functions from sleep to decision making. Interestingly, the habenular nuclei are present in all vertebrates, suggesting that they provide a common neural mechanism to influence these diverse functions. To unravel conserved habenula circuitry and approach an understanding of their basic function, we investigated the organization of these nuclei in the lamprey, one of the phylogenetically oldest vertebrates. Based on connectivity and molecular expression, we show that the MHb and LHb circuitry is conserved in the lamprey. As in mammals, separate populations of neurons in the LHb homolog project directly or indirectly to dopamine and serotonin neurons through a nucleus homologous to the GABAergic rostromedial mesopontine tegmental nucleus and directly to histamine neurons. The pallidal and hypothalamic inputs to the LHb homolog are also conserved. In contrast to other species, the habenula projecting pallidal nucleus is topographically distinct from the dorsal pallidum, the homolog of the globus pallidus interna. The efferents of the MHb homolog selectively target the interpeduncular nucleus. The MHb afferents arise from sensory (medial olfactory bulb, parapineal, and pretectum) and not limbic areas, as they do in mammals; consequently, the "context" in which this circuitry is recruited may have changed during evolution. Our results indicate that the habenular nuclei provide a common vertebrate circuitry to adapt behavior in response to rewards, stress, and other motivating factors.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center