Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2012 Feb 3;110(3):428-38. doi: 10.1161/CIRCRESAHA.111.260760. Epub 2011 Dec 22.

Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis.

Author information

Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands.

Erratum in

  • Circ Res. 2012 Mar 2;110(5):e46. Marincovic, Goran [corrected to Marinković, Goran].



Nuclear receptor Nur77, also known as NR4A1, TR3, or NGFI-B, is expressed in human atherosclerotic lesions in macrophages, endothelial cells, T cells and smooth muscle cells. Macrophages play a critical role in atherosclerosis and the function of Nur77 in lesion macrophages has not yet been investigated.


This study aims to delineate the function of Nur77 in macrophages and to assess the effect of bone marrow-specific deficiency of Nur77 on atherosclerosis.


We investigated Nur77 in macrophage polarization using bone marrow-derived macrophages (BMM) from wild-type and Nur77-knockout (Nur77(-/-)) mice. Nur77(-/-) BMM exhibit changed expression of M2-specific markers and an inflammatory M1-phenotype with enhanced expression of interleukin-12, IFNγ, and SDF-1α and increased NO synthesis in (non)-stimulated Nur77(-/-) BMM cells. SDF-1α expression in nonstimulated Nur77(-/-) BMM is repressed by Nur77 and the chemoattractive activity of Nur77(-/-) BMM is abolished by SDF-1α inhibiting antibodies. Furthermore, Nur77(-/-) mice show enhanced thioglycollate-elicited migration of macrophages and B cells. The effect of bone marrow-specific deficiency of Nur77 on atherosclerosis was studied in low density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Ldlr(-/-) mice with a Nur77(-/-)-deficient bone marrow transplant developed 2.1-fold larger atherosclerotic lesions than wild-type bone marrow-transplanted mice. These lesions contain more macrophages, T cells, smooth muscle cells and larger necrotic cores. SDF-1α expression is higher in lesions of Nur77(-/-)-transplanted mice, which may explain the observed aggravation of lesion formation.


In conclusion, in bone marrow-derived cells the nuclear receptor Nur77 has an anti-inflammatory function, represses SDF-1α expression and inhibits atherosclerosis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center