Format

Send to

Choose Destination
See comment in PubMed Commons below
Ann Neurol. 2011 Dec;70(6):881-6. doi: 10.1002/ana.22678.

Rare variants in the CYP27B1 gene are associated with multiple sclerosis.

Author information

1
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.

Abstract

OBJECTIVE:

Multiple sclerosis (MS) is a complex neurological disease. Genetic linkage analysis and genotyping of candidate genes in families with 4 or more affected individuals more heavily loaded for susceptibility genes has not fully explained familial disease clustering.

METHODS:

We performed whole exome sequencing to further understand the heightened prevalence of MS in these families.

RESULTS:

Forty-three individuals with MS (1 from each family) were sequenced to find rare variants in candidate MS susceptibility genes. On average, >58,000 variants were identified in each individual. A rare variant in the CYP27B1 gene causing complete loss of gene function was identified in 1 individual. Homozygosity for this mutation results in vitamin D-dependent rickets I (VDDR1), whereas heterozygosity results in lower calcitriol levels. This variant showed significant heterozygous association in 3,046 parent-affected child trios (p = 1 × 10(-5)). Further genotyping in >12,500 individuals showed that other rare loss of function CYP27B1 variants also conferred significant risk of MS, Peto odds ratio = 4.7 (95% confidence interval, 2.3-9.4; p = 5 × 10(-7)). Four known VDDR1 mutations were identified, all overtransmitted. Heterozygous parents transmitted these alleles to MS offspring 35 of 35× (p = 3 × 10(-9)).

INTERPRETATION:

A causative role for CYP27B1 in MS is supported; the mutations identified are known to alter function having been shown in vivo to result in rickets when 2 copies are present. CYP27B1 encodes the vitamin D-activating 1-alpha hydroxylase enzyme, and thus a role for vitamin D in MS pathogenesis is strongly implicated.

Comment in

PMID:
22190362
DOI:
10.1002/ana.22678
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center