Send to

Choose Destination
Am J Physiol Endocrinol Metab. 2012 Mar 1;302(5):E561-75. doi: 10.1152/ajpendo.00209.2011. Epub 2011 Dec 20.

P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells.

Author information

Dept. of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Univ. of Western Ontario, London, ON, Canada.


The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center