Format

Send to

Choose Destination
J Biomech. 2012 Mar 15;45(5):799-804. doi: 10.1016/j.jbiomech.2011.11.020. Epub 2011 Dec 17.

Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia.

Author information

1
Department of Biomedical Engineering, University of Wisconsin-Madison, WI 53706, USA.

Abstract

Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z(0)), characteristic impedance (Z(C)), pulse wave velocity (PWV) and index of global wave reflections (P(b)/P(f)), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1(R/R)) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1(+/+)) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z(0) (mPAP/CO) increased by ~100% in both genotypes (p<0.05). Contrary to our expectations, Z(C), PWV and P(b)/P(f) did not change. However, with recovery, Z(C) and PWV decreased in the Col1a1(+/+) mice and remained unchanged in the Col1a1(R/R) mice. Z(0) decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function.

PMID:
22183202
PMCID:
PMC3294039
DOI:
10.1016/j.jbiomech.2011.11.020
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center