Format

Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 2012 Jan;122(1):229-40. doi: 10.1172/JCI46215. Epub 2011 Dec 19.

Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice.

Author information

1
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.

PMID:
22182843
PMCID:
PMC3248282
DOI:
10.1172/JCI46215
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center