Send to

Choose Destination
See comment in PubMed Commons below
Cold Spring Harb Symp Quant Biol. 2011;76:31-8. doi: 10.1101/sqb.2011.76.010520. Epub 2011 Dec 16.

The time of metabolism: NAD+, SIRT1, and the circadian clock.

Author information

  • 1Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, Irvine, California 92697, USA.


The mammalian cell contains a molecular clock that contributes, within each organism, to circadian rhythms and variety of physiological and metabolic processes. The clock machinery is constituted by interwined transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of clock-controlled genes. These oscillations in gene expression necessarily implicate events of chromatin remodeling on a relatively large, global scale, considering that as many 10% of cellular transcripts oscillate in a circadian manner. CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyltransferase activity and operates within a large nuclear complex with other chromatin remodelers. CLOCK directs the cyclic acetylation of the histone H3 and of its own partner BMAL1. A search for the histone deacetylase (HDAC) that counterbalanced CLOCK activity revealed that SIRT1, a nicotinamide adenine dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of several metabolic processes and was found to interact with CLOCK and to be recruited to circadian promoters in a cyclic manner. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link among energy balance, chromatin remodeling, and circadian physiology.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center