Format

Send to

Choose Destination
Microbes Infect. 2012 Apr;14(4):380-6. doi: 10.1016/j.micinf.2011.11.013. Epub 2011 Dec 7.

Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis.

Author information

1
Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Phenol-soluble modulins are secreted staphylococcal peptides with an amphipathic α-helical structure. Some PSMs are strongly cytolytic toward human neutrophils and represent major virulence determinants during Staphylococcus aureus skin and blood infection. However, capacities of PSMs to lyse human erythrocytes have not been investigated. Here, we demonstrate that many S. aureus and Staphylococcus epidermidis PSMs lyse human erythrocytes. Furthermore, synergism with S. aureus β-toxin considerably increased the hemolytic capacities of several PSMs. This synergism may be of key importance in PSM and β-toxin-producing S. aureus or in mixed-strain or -species infections with PSM and β-toxin producers. Of specific interest, several PSMs, in particular PSMα peptides, contributed to a considerable extent to synergistic hemolysis with β-toxin or when using the β-toxin-producing strain RN4220 in CAMP assays. Thus, CAMP-type assays should not be used to detect or quantify S. aureus δ-toxin production, but may be used for an overall assessment of Agr functionality. Our study suggests an additional role of PSMs in staphylococcal pathogenesis and demonstrates that the repertoire of staphylococcal hemolysins is not limited to S. aureus and is much larger and diverse than previously thought.

PMID:
22178792
PMCID:
PMC3299937
DOI:
10.1016/j.micinf.2011.11.013
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center