Send to

Choose Destination
Chembiochem. 2012 Jan 23;13(2):224-30. doi: 10.1002/cbic.201100574. Epub 2011 Dec 12.

Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis.

Author information

Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität, Pharmazeutische Biologie und Biotechnologie, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.


Mensacarcin is a potent cytotoxic agent isolated from Streptomyces bottropensis. It possesses a high content of oxygen atoms and two epoxide groups, and shows cytostatic and cytotoxic activity comparable to that of doxorubicin, a widely used drug for antitumor therapy. Another natural compound, rishirilide A, was also isolated from the fermentation broth of S. bottropensis. Screening a cosmid library of S. bottropensis with minimal PKS-gene-specific primers revealed the presence of three different type II polyketide synthase (PKS) gene clusters in this strain: the msn cluster (mensacarcin biosynthesis), the rsl cluster (rishirilide biosynthesis), and the mec cluster (putative spore pigment biosynthesis). Interestingly, luciferase-like oxygenases, which are very rare in Streptomyces species, are enriched in both the msn cluster and the rsl cluster. Three cosmids, cos2 (containing the major part of the msn cluster), cos3 (harboring the mec cluster), and cos4 (spanning probably the whole rsl cluster) were introduced into the general heterologous host Streptomyces albus by intergeneric conjugation. Expression of cos2 and cos4 in S. albus led to the production of didesmethylmensacarcin (DDMM, a precursor of mensacarcin) and the production of rishirilide A and B (a precursor of rishirilide A), respectively. However, no product was detected from the expression of cos3. In addition, based on the results of isotope-feeding experiments in S. bottropensis, a putative biosynthesis pathway for mensacarcin is proposed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center