Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurol. 2012 Jun;259(6):1199-205. doi: 10.1007/s00415-011-6337-x. Epub 2011 Dec 9.

Decreased microglial activation in MS patients treated with glatiramer acetate.

Author information

1
Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe St, Pathology 627, Baltimore, MD 21287-6985, USA. jratchf1@jhmi.edu

Abstract

Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [(11)C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [(11)C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging of the brain at baseline and after 1 year of treatment with glatiramer acetate. Parametric maps of [(11)C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [(11)C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region-of-interest analysis was also applied to selected subregions. Whole brain [(11)C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: -0.74, -5.53%) between baseline and 1 year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [(11)C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load.

PMID:
22160466
PMCID:
PMC3478150
DOI:
10.1007/s00415-011-6337-x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center