Format

Send to

Choose Destination
ISME J. 2012 Jun;6(6):1210-21. doi: 10.1038/ismej.2011.175. Epub 2011 Dec 8.

High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use.

Author information

1
Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. mayali1@llnl.gov

Abstract

Most microorganisms remain uncultivated, and typically their ecological roles must be inferred from diversity and genomic studies. To directly measure functional roles of uncultivated microbes, we developed Chip-stable isotope probing (SIP), a high-sensitivity, high-throughput SIP method performed on a phylogenetic microarray (chip). This approach consists of microbial community incubations with isotopically labeled substrates, hybridization of the extracted community rRNA to a microarray and measurement of isotope incorporation--and therefore substrate use--by secondary ion mass spectrometer imaging (NanoSIMS). Laboratory experiments demonstrated that Chip-SIP can detect isotopic enrichment of 0.5 atom % (13)C and 0.1 atom % (15)N, thus permitting experiments with short incubation times and low substrate concentrations. We applied Chip-SIP analysis to a natural estuarine community and quantified amino acid, nucleic acid or fatty acid incorporation by 81 distinct microbial taxa, thus demonstrating that resource partitioning occurs with relatively simple organic substrates. The Chip-SIP approach expands the repertoire of stable isotope-enabled methods available to microbial ecologists and provides a means to test genomics-generated hypotheses about biogeochemical function in any natural environment.

PMID:
22158395
PMCID:
PMC3358021
DOI:
10.1038/ismej.2011.175
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center