Format

Send to

Choose Destination
See comment in PubMed Commons below
Small GTPases. 2011 Jul;2(4):227-232. Epub 2011 Jul 1.

Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells.

Author information

  • 1Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA.

Abstract

The investigation of Rho-family GTPases has uncovered mechanisms for spatiotemporal control of cellular processes such as cell polarization, movement, morphogenesis and cell division. Now Rho GTPase plays another leading role in the discovery of a new signaling mechanism for auxin, a multifunctional hormone that regulates pattern formation in plants. Arabidopsis leaf epidermal pavement cells (PCs) develop the puzzle-piece cell shape with interlocking lobes and indentations via interdigitated cellular growth.1 Through the ABP1 (Auxin Binding Protein 1) cell surface receptor, auxin coordinately activates 2 mutually exclusive Rho GTPase signaling pathways that are activated in the complementary lobing and indenting sides of adjacent cells: the ROP2 pathway for lobe formation and the ROP6 pathway for promoting indentation. This new signaling mechanism also involves ROP2-dependent polar accumulation of PIN1 in the plasma membrane, a member of the PIN auxin efflux carrier family that is critical for the formation of various developmental patterns including the PC interdigitation pattern. This Rho-dependent auxin signaling mechanism explains how interdigitated cellular growth is coordinated. In this extra view, we propose that the same mechanism can also explain how a uniform auxin signal initiates the formation of the interdigitated pattern.

PMID:
22145096
PMCID:
PMC3225913
DOI:
10.4161/sgtp.2.4.16702
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center