Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011;6(12):e28287. doi: 10.1371/journal.pone.0028287. Epub 2011 Dec 1.

SLO-2 is cytoprotective and contributes to mitochondrial potassium transport.

Author information

1
Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America.

Abstract

Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K(+) transport and APC. The canonical Ca(2+)-activated BK (or "maxi-K") channel SLO1 was dispensable for both mitochondrial K(+) transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K(+) channel SLO2 was required, and that SLO2-dependent mitochondrial K(+) transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K(+).

PMID:
22145034
PMCID:
PMC3228735
DOI:
10.1371/journal.pone.0028287
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center