Send to

Choose Destination
Exp Dermatol. 2012 Feb;21(2):147-53. doi: 10.1111/j.1600-0625.2011.01416.x. Epub 2011 Dec 6.

UV radiation induces the release of angiopoietin-2 from dermal microvascular endothelial cells.

Author information

Beiersdorf AG, 20245 Hamburg, Germany.


In human skin, ultraviolet radiation (UVR)-induced erythema is characterized by the inflammatory and angiogenic activation of dermal endothelial cells. Recently, it has been shown that the release of angiopoietin-2 (Ang-2) from cytoplasmic storages of activated endothelial cells is crucial for the induction of inflammation and angiogenesis. Therefore, we hypothesized that UVR exposure induces the release of Ang-2 from endothelial cells controlling the early steps of erythema formation. In an in vivo study, suction blister fluids generated from UV-irradiated skin showed significantly increased concentrations of Ang-2, vascular endothelial growth factor (VEGF) and tumor necrosis factor-α (TNFα). Likewise, in vitro UVR exposure of human dermal microvascular endothelial cells (HDMECs) triggered the release of Ang-2 that enhanced the pro-inflammatory response of these cells and facilitated their detachment from smooth muscle cells as evidenced by employing a three-dimensional co-culture spheroid model. These effects were inhibited by angiopoietin-1 (Ang-1), which competes with Ang-2 for binding the endothelial cell Tie2 receptor. Collectively, these observations suggest that UVR triggers the release of endothelial Ang-2 which may promote the destabilization and pro-inflammatory phenotype of the microvascular endothelium. As Ang-1 counteracts UVR-induced effects, stimulating the Ang-1 activity may represent a strategy to stabilize the dermal microcirculatory system, thus protecting against UVR-induced skin damages.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center