Format

Send to

Choose Destination
Nat Methods. 2011 Dec 4;9(1):96-102. doi: 10.1038/nmeth.1784.

mGRASP enables mapping mammalian synaptic connectivity with light microscopy.

Author information

1
Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA. kimj@kist.re.kr

Abstract

The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used to detect the location of synapses quickly, accurately and with high spatial resolution. The method has been previously applied in the nematode and the fruit fly but requires substantial modification for use in the mammalian brain. We developed mammalian GRASP (mGRASP) by optimizing transmembrane split-GFP carriers for mammalian synapses. Using in silico protein design, we engineered chimeric synaptic mGRASP fragments that were efficiently delivered to synaptic locations and reconstituted GFP fluorescence in vivo. Furthermore, by integrating molecular and cellular approaches with a computational strategy for the three-dimensional reconstruction of neurons, we applied mGRASP to both long-range circuits and local microcircuits in the mouse hippocampus and thalamocortical regions, analyzing synaptic distribution in single neurons and in dendritic compartments.

PMID:
22138823
PMCID:
PMC3424517
DOI:
10.1038/nmeth.1784
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center