Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2012 Jan 10;201:125-33. doi: 10.1016/j.neuroscience.2011.11.040. Epub 2011 Nov 29.

Δ9-Tetrahydrocannabinol attenuates MDMA-induced hyperthermia in rhesus monkeys.

Author information

  • 1Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. mtaffe@scripps.edu

Abstract

BACKGROUND:

Cannabis is commonly consumed by Ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, including as an intentional strategy to manipulate the drug experience. The most active psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), and other drugs with partial or full agonist activity at the CB(1) receptor, produces a reduction of body temperature in rodents. Reports show that administration of THC can attenuate temperature increases caused by MDMA in mice or rats; however, a recent study in humans shows that THC potentiates MDMA-induced temperature elevations. Relatively little scientific evidence on the thermoregulatory effects of THC in monkeys is available.

METHODS:

The body temperature of male rhesus macaques was recorded after challenge with THC (0.1-0.3 mg/kg, i.m.) or combined challenge of THC with the CB(1) receptor antagonist SR141716 (Rimonabant; 0.3 mg/kg, i.m.) or combined challenge of THC (0.1, 0.3 mg/kg, i.m.) with MDMA (1.78 mg/kg p.o.) using minimally-invasive, implanted radiotelemetry techniques.

RESULTS:

THC reduced the body temperature of monkeys in a dose-dependent manner with the nadir observed 3-5 h post-injection; however, an attenuation of normal circadian cooling was also produced overnight following dosing. Hypothermia induced by THC (0.3 mg/kg, i.m.) was prevented by Rimonabant (0.3 mg/kg, i.m.). Finally, 0.3 mg/kg THC (i.m.) attenuated the elevation of body temperature produced by MDMA for about 4 h after oral dosing.

CONCLUSIONS:

As with rodents THC produces a robust and lasting decrement in the body temperature of rhesus monkeys; this effect is mediated by the CB(1) receptor. THC also protects against the immediate hyperthermic effects of MDMA in monkeys in a dose-dependent manner. Nevertheless, a paradoxical attenuation of circadian cooling overnight after the THC/MDMA combination cautions that longer-term effects may be critical in assessing risks for the recreational user of cannabis in combination with MDMA.

Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk