Format

Send to

Choose Destination
See comment in PubMed Commons below
Prog Mol Biol Transl Sci. 2012;105:57-82. doi: 10.1016/B978-0-12-394596-9.00003-2.

Experimental models of seizures and epilepsies.

Author information

1
Division of Neurology, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.

Abstract

Epilepsy is one of the most common neurological conditions that affect people of all ages. Epilepsy is characterized by occurrence of spontaneous recurrent seizures. Currently available drugs are ineffective in controlling seizures in approximately one-third of patients with epilepsy. Moreover, these drugs are associated with adverse effects, and none of them are effective in preventing development of epilepsy following an insult or injury. To develop an effective therapeutic strategy that can interfere with the process of development of epilepsy (epileptogenesis), it is crucial to study the changes that occur in the brain after an injury and before epilepsy develops. It is not possible to determine these changes in human tissue for obvious ethical reasons. Over the years, experimental models of epilepsies have contributed immensely in improving our understanding of mechanism of epileptogenesis as well as of seizure generation. There are many models that replicate at least some of the characteristics of human epilepsy. Each model has its advantages and disadvantages, and the investigator should be aware of this before selecting a specific model for his/her studies. Availability of a good animal model is a key to the development of an effective treatment. Unfortunately, there are many epilepsy syndromes, specifically pediatric, which still lack a valid animal model. It is vital that more research is done to develop animal models for such syndromes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center