Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2012 Feb 15;302(4):C666-75. doi: 10.1152/ajpcell.00181.2011. Epub 2011 Nov 30.

Estradiol attenuates high glucose-induced endothelial nitrotyrosine: role for neuronal nitric oxide synthase.

Author information

  • 1Department of Obstetrics and Gynecology, Women and Children's Health Research Institute, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.


Hyperglycemia in diabetes causes increased oxidative stress in the vascular endothelium with generation of free radicals such as superoxide. Peroxynitrite, a highly reactive species generated from superoxide and nitric oxide (NO), induces proinflammatory tyrosine nitration of intracellular proteins under such conditions. The female sex hormone estrogen appears to exert protective effects on the nondiabetic endothelium. However, several studies show reduced vascular protection in women with diabetes, suggesting alterations in estrogen signaling under high glucose. In this study, we examined the endothelial effects of estrogen under increasing glucose levels, focusing on nitrotyrosine and peroxynitrite. Human umbilical vein endothelial cells were incubated with normal (5.5 mM) or high (15.5 or 30.5 mM) glucose before addition of estradiol (E2, 1 or 10 nM). Selective NO synthase (NOS) inhibitors were used to determine the role of specific NOS isoforms. Addition of E2 significantly reduced high glucose-induced increase in peroxynitrite and consequently, nitrotyrosine. The superoxide levels were unchanged, suggesting effects on NO generation. Inhibition of neuronal NOS (nNOS) reduced high glucose-induced nitrotyrosine, demonstrating a critical role for this enzyme. E2 increased nNOS activity under normal glucose while decreasing it under high glucose as determined by its phosphorylation status. These data show that nNOS contributes to endothelial peroxynitrite and subsequent nitrotyrosine generation under high glucose, which can be attenuated by E2 through nNOS inhibition. The altered regulation of nNOS by E2 under high glucose is a potential therapeutic target in women with diabetes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center