Format

Send to

Choose Destination
See comment in PubMed Commons below
New Phytol. 2012 Mar;193(4):890-902. doi: 10.1111/j.1469-8137.2011.03976.x. Epub 2011 Nov 30.

Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome.

Author information

1
Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.

Abstract

The metabolome of a plant comprises all small molecule metabolites, which are produced during cellular processes. The genetic basis for metabolites in nonmodel plants is unknown, despite frequently observed correlations between metabolite concentrations and stress responses. A quantitative genetic analysis of metabolites in a nonmodel plant species is thus warranted. Here, we use standard association genetic methods to correlate 3563 single nucleotide polymorphisms (SNPs) to concentrations of 292 metabolites measured in a single loblolly pine (Pinus taeda) association population. A total of 28 single locus associations were detected, representing 24 and 20 unique SNPs and metabolites, respectively. Multilocus Bayesian mixed linear models identified 2998 additional associations for a total of 1617 unique SNPs associated to 255 metabolites. These SNPs explained sizeable fractions of metabolite heritabilities when considered jointly (56.6% on average) and had lower minor allele frequencies and magnitudes of population structure as compared with random SNPs. Modest sets of SNPs (n = 1-23) explained sizeable portions of genetic effects for many metabolites, thus highlighting the importance of multi-SNP models to association mapping, and exhibited patterns of polymorphism consistent with being linked to targets of natural selection. The implications for association mapping in forest trees are discussed.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center