Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2012 Jan 10;51(1):194-204. doi: 10.1021/bi201259y. Epub 2011 Dec 13.

Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1.

Author information

1
Institute of Pharmacology, Hannover Medical School, Hannover, Germany.

Erratum in

  • Biochemistry. 2012 Mar 20;51(11):2357.

Abstract

Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.

PMID:
22122229
DOI:
10.1021/bi201259y
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center