Format

Send to

Choose Destination
See comment in PubMed Commons below
Science. 2011 Nov 25;334(6059):1133-7. doi: 10.1126/science.1209870.

Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice.

Author information

1
Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.

Abstract

Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by microtransplanting small numbers of embryonic enhanced green fluorescent protein-expressing, leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as a proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.

PMID:
22116886
PMCID:
PMC3770458
DOI:
10.1126/science.1209870
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center