Format

Send to

Choose Destination
Nat Chem. 2011 Nov 13;3(12):943-8. doi: 10.1038/nchem.1198.

Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing.

Author information

1
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.

Abstract

Reversible covalent bonding is often used for the creation of novel supramolecular structures, multi-component assemblies and sensing ensembles. Despite the remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here, we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. To demonstrate the use of this assembly process we also explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the handedness of the alcohol. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction.

PMID:
22109274
PMCID:
PMC3226768
DOI:
10.1038/nchem.1198
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center