Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Med Res Methodol. 2011 Nov 22;11:155. doi: 10.1186/1471-2288-11-155.

Multivariate modeling to identify patterns in clinical data: the example of chest pain.

Author information

1
Department of General Practice/Family Medicine, Philipps University Marburg, Germany. oliver.hirsch@staff.uni-marburg.de

Abstract

BACKGROUND:

In chest pain, physicians are confronted with numerous interrelationships between symptoms and with evidence for or against classifying a patient into different diagnostic categories. The aim of our study was to find natural groups of patients on the basis of risk factors, history and clinical examination data which should then be validated with patients' final diagnoses.

METHODS:

We conducted a cross-sectional diagnostic study in 74 primary care practices to establish the validity of symptoms and findings for the diagnosis of coronary heart disease. A total of 1199 patients above age 35 presenting with chest pain were included in the study. General practitioners took a standardized history and performed a physical examination. They also recorded their preliminary diagnoses, investigations and management related to the patient's chest pain. We used multiple correspondence analysis (MCA) to examine associations on variable level, and multidimensional scaling (MDS), k-means and fuzzy cluster analyses to search for subgroups on patient level. We further used heatmaps to graphically illustrate the results.

RESULTS:

A multiple correspondence analysis supported our data collection strategy on variable level. Six factors emerged from this analysis: "chest wall syndrome", "vital threat", "stomach and bowel pain", "angina pectoris", "chest infection syndrome", and " self-limiting chest pain". MDS, k-means and fuzzy cluster analysis on patient level were not able to find distinct groups. The resulting cluster solutions were not interpretable and had insufficient statistical quality criteria.

CONCLUSIONS:

Chest pain is a heterogeneous clinical category with no coherent associations between signs and symptoms on patient level.

PMID:
22108386
PMCID:
PMC3228697
DOI:
10.1186/1471-2288-11-155
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center