Format

Send to

Choose Destination
J Biol Chem. 2012 Jan 6;287(2):1198-209. doi: 10.1074/jbc.M111.291294. Epub 2011 Nov 18.

CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling.

Author information

1
Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto Universitario de Investigación en Neuroquímica, and Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain.

Abstract

The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.

PMID:
22102284
PMCID:
PMC3256884
DOI:
10.1074/jbc.M111.291294
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center