Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Microbiol. 2012 Feb;20(2):59-65. doi: 10.1016/j.tim.2011.10.002. Epub 2011 Nov 16.

Strengthening relationships: amyloids create adhesion nanodomains in yeasts.

Author information

1
Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA. plipke@brooklyn.cuny.edu

Abstract

Budding yeasts adhere to biotic or abiotic surfaces and aggregate to form biofilms, using wall-anchored glycoprotein adhesins. The process is paradoxical: adhesins often show weak binding to specific ligands, yet mediate remarkably strong adherence. Single-molecule atomic force microscopy (AFM), genomics, biochemistry and cell biology have recently explained the puzzle, with Candida albicans Als adhesins as the paradigm. The strength of adhesion results partly from force-activated amyloid-like clustering of hundreds of adhesin molecules to form arrays of ordered multimeric binding sites. The various protein domains of eukaryotic adhesins cooperate to facilitate this fascinating new mechanism of activation.

PMID:
22099004
PMCID:
PMC3278544
DOI:
10.1016/j.tim.2011.10.002
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center