Format

Send to

Choose Destination
Science. 2011 Nov 18;334(6058):968-71. doi: 10.1126/science.1206980.

Domain dynamics during ferroelectric switching.

Author information

1
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

The utility of ferroelectric materials stems from the ability to nucleate and move polarized domains using an electric field. To understand the mechanisms of polarization switching, structural characterization at the nanoscale is required. We used aberration-corrected transmission electron microscopy to follow the kinetics and dynamics of ferroelectric switching at millisecond temporal and subangstrom spatial resolution in an epitaxial bilayer of an antiferromagnetic ferroelectric (BiFeO(3)) on a ferromagnetic electrode (La(0.7)Sr(0.3)MnO(3)). We observed localized nucleation events at the electrode interface, domain wall pinning on point defects, and the formation of ferroelectric domains localized to the ferroelectric and ferromagnetic interface. These results show how defects and interfaces impede full ferroelectric switching of a thin film.

PMID:
22096196
DOI:
10.1126/science.1206980
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center