Format

Send to

Choose Destination
See comment in PubMed Commons below
J Anat. 2012 Jan;220(1):77-85. doi: 10.1111/j.1469-7580.2011.01449.x. Epub 2011 Nov 16.

Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats.

Author information

1
Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.

Abstract

This study investigated structural and functional features of apoptotic alveolar bone osteoclasts in estrogen-treated rats. For this purpose, 15 female rats 22 days old were divided into three groups: Estrogen (EG), Sham (SG) and Control (CG). The rats of EG received daily intramuscular injection of estrogen for 7 days. The SG received only the oil vehicle. Maxillary fragments containing alveolar bone were removed and processed for light and transmission electron microscopy. Area (OcA) and number of nuclei (OcN) and bone resorption surface per TRAP-positive osteoclasts (BS/OC) were obtained. Vimentin, caspase-3 and MMP-9 immunoreactions, TUNEL/TRAP and MMP-9/TUNEL combined reactions were performed. In EG, the OcA, OcN and BS/Oc were reduced. Moreover, osteoclasts showed cytoplasm immunolabelled by caspase-3 and a different pattern of vimentin expression in comparison with CG and SG. MMP-9 expression was not affected by estrogen and the TUNEL-positive osteoclasts were MMP-9-immunolabelled. In EG, ultrastructural images showed that apoptotic osteoclasts did not exhibit ruffled borders or clear zones and were shedding mononucleated portions. TRAP-positive structures containing irregular and dense chromatin were partially surrounded by fibroblast-like cells. In conclusion, the reduction in the BS/Oc may be due to reduction in OcA and OcN; these effects seem to be related to vimentin disarrangement rather than to an interference of estrogen with osteoclast MMP-9 expression. Osteoclast apoptosis involves caspase-3 activity and vimentin degradation; these cells release portions containing one apoptotic nucleus and, subsequently, undergo fragmentation, giving rise to apoptotic bodies.

PMID:
22092353
PMCID:
PMC3248665
DOI:
10.1111/j.1469-7580.2011.01449.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center