Format

Send to

Choose Destination
Cereb Cortex. 2012 Oct;22(10):2375-91. doi: 10.1093/cercor/bhr317. Epub 2011 Nov 16.

Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex.

Author information

1
Digital Neuroanatomy, Max Planck Florida Institute, Jupiter, FL 33458-2906, USA. marcel.oberlaender@mpfi.org

Abstract

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type-specific lemniscal synaptic wiring diagram and elucidates structure-function relationships of this physiologically relevant pathway at single-cell resolution.

PMID:
22089425
PMCID:
PMC3432239
DOI:
10.1093/cercor/bhr317
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center