Send to

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2011 Nov 15;2:535. doi: 10.1038/ncomms1550.

Electric field-induced chemical locomotion of conducting objects.

Author information

Université de Bordeaux, Pessac, France.


Externally triggered motion of small objects has potential in applications ranging from micromachines, to drug delivery, and self-assembly of superstructures. Here we present a new concept for the controlled propulsion of conducting objects with sizes ranging from centimetres to hundreds of micrometres. It is based on their polarization, induced by an electric field, which triggers spatially separated oxidation and reduction reactions involving asymmetric gas bubble formation. This in turn leads to a directional motion of the objects. Depending on the implied redox chemistry and the device design, the speed can be controlled and the motion can be switched from linear to rotational. This type of chemical locomotion is an alternative to existing approaches based on other principles.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center