Format

Send to

Choose Destination
BMC Musculoskelet Disord. 2011 Nov 10;12:256. doi: 10.1186/1471-2474-12-256.

Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study.

Author information

1
NUTRIM, Department of Human Movement Sciences, Maastricht University Medical Centre, The Netherlands.

Abstract

BACKGROUND:

Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic.

METHODS/DESIGN:

Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot.Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT) imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI) of the foot and ankle.Imaging data will be segmented to derive the geometry of the bones and the orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models.

DISCUSSION:

This protocol will lead to the generation of unique datasets which will be used to develop linked inverse dynamic and forward dynamic biomechanical foot models. These models may be beneficial in predicting the effect of and thus improving the efficacy of orthotic devices for the foot and ankle.

PMID:
22074482
PMCID:
PMC3234203
DOI:
10.1186/1471-2474-12-256
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center