Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Dec 30;286(52):44646-58. doi: 10.1074/jbc.M111.265462. Epub 2011 Nov 4.

Identification of a cAMP-response element in the regulator of G-protein signaling-2 (RGS2) promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles.

Author information

1
Department of Physiology, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA.

Abstract

Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)β) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)β activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)β activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)β pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.

PMID:
22057271
PMCID:
PMC3247950
DOI:
10.1074/jbc.M111.265462
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center