Send to

Choose Destination
Biochim Biophys Acta. 2012 Jan;1820(1):24-32. doi: 10.1016/j.bbagen.2011.10.011. Epub 2011 Oct 26.

Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation.

Author information

Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.



O-Linked β-N-acetylglucosaminylation (O-GlcNAcylation) on the Ser/Thr residue of nucleocytoplasmic proteins is a dynamic post-translational modification found in multicellular organisms. More than 500 proteins involved in a wide range of cellular functions, including cell cycle, transcription, epigenesis, and glucose sensing, are modified with O-GlcNAc. Although it has been suggested that O-GlcNAcylation is involved in the differentiation of cells in a lineage-specific manner, its role in skeletal myogenesis is unknown.


A myogenesis-dependent drastic decrease in the levels of O-GlcNAcylation was found in mouse C2C12 myoblasts. The global decrease in O-GlcNAcylation was observed at the earlier stage of myogenesis, prior to myoblast fusion. Genetic or pharmacological inactivation of O-GlcNAcase blocked both the myogenesis-dependent global decrease in O-GlcNAcylation and myoblast fusion. Although inactivation of O-GlcNAcase affected neither cell-cycle exit nor cell survival in response to myogenic stimulus, it perturbed the expression of myogenic regulatory factors. While the expression of myod and myf5 in response to myogenic induction was not affected, that of myogenin and mrf4 was severely inhibited by the inactivation of O-GlcNAcase.


These results indicate that the terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAcylation.


O-GlcNAcylation is involved in differentiation in a cell lineage-dependent manner, and a decrease in O-GlcNAcylation may have a common role in the differentiation of cells of muscle lineage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center