Send to

Choose Destination
J Appl Physiol (1985). 2012 Mar;112(5):695-703. doi: 10.1152/japplphysiol.00136.2011. Epub 2011 Nov 3.

Phasic respiratory modulation of pharyngeal collapsibility via neuromuscular mechanisms in rats.

Author information

Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.


Obstructive sleep apnea patients experience recurrent upper airway (UA) collapse due to decreases in the UA dilator muscle activity during sleep. In contrast, activation of UA dilators reduces pharyngeal critical pressure (Pcrit, an index of pharyngeal collapsibility), suggesting an inverse relationship between pharyngeal collapsibility and dilator activity. Since most UA muscles display phasic respiratory activity, we hypothesized that pharyngeal collapsibility is modulated by respiratory drive via neuromuscular mechanisms. Adult male Sprague-Dawley rats were anesthetized, vagotomized, and ventilated (normocapnia). In one group, integrated genioglossal activity, Pcrit, and maximal airflow (V(max)) were measured at three expiration and five inspiration time points within the breathing cycle. Pcrit was closely and inversely related to phasic genioglossal activity, with the value measured at peak inspiration being the lowest. In other groups, the variables were measured during expiration and peak inspiration, before and after each of five manipulations. Pcrit was 26% more negative (-15.0 ± 1.0 cmH(2)O, -18.9 ± 1.2 cmH(2)O; n = 23), V(max) was 7% larger (31.0 ± 1.0 ml/s, 33.2 ± 1.1 ml/s), nasal resistance was 12% bigger [0.49 ± 0.05 cmH(2)O/(ml/s), 0.59 ± 0.05 cmH(2)O/(ml/s)], and latency to induced UA closure was 14% longer (55 ± 4 ms, 63 ± 5 ms) during peak inspiration vs. expiration (all P < 0.005). The expiration-inspiration difference in Pcrit was abolished with neuromuscular blockade, hypocapnic apnea, or death but was not reduced by the superior laryngeal nerve transection or altered by tracheal displacement. Collectively, these results suggest that pharyngeal collapsibility is moment-by-moment modulated by respiratory drive and this phasic modulation requires neuromuscular mechanisms, but not the UA negative pressure reflex or tracheal displacement by phasic lung inflation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center