Send to

Choose Destination
See comment in PubMed Commons below
Biol Pharm Bull. 2011;34(11):1666-70.

Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice.

Author information

  • 1Experimental Teaching Center of Preventive Medicine, School of Public Health and Tropical Medicine, Southern Medical University, P.R. China.


The aim of this study was to investigate the protective effects of andrographolide (AP), a bioactive component isolated from Andrographis paniculata, on carbon tetrachloride (CCl(4))-induced liver injury as well as the possible mechanisms involved in this protection in mice. Acute liver injury was induced by CCl(4) intoxication in mice. Serum biological analysis, lipid peroxides and antioxidant estimation, histopathological studies, reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay were carried out. CCl(4) treatment resulted in severe hepatic injury, as evidenced by significant elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and typical histopathological changes, such as hepatocyte necrosis. Additionally, CCl(4) administration led to oxidative stress in mice, as indicated by a remarkable increase in the hepatic malondialdehyde (MDA) level, together with a significant decrease in liver reduced glutathione (GSH) content. However, CCl(4)-induced hepatotoxicity was significantly attenuated by pretreatment with AP, as demonstrated by significant reduction of serum ALT, AST levels and hepatic MDA activity, along with a remarkable increase in hepatic GSH content. Histopathological changes induced by CCl(4) were also ameliorated by AP pretreatment. The marked increase of tumor necrosis factor-α (TNF-α) induced by CCl(4) was attenuated by AP, and the dramatic elevation of heme oxygenase-1 (HO-1) at transcriptional and protein levels was augmented following AP pretreatment. AP can effectively prevent liver injury induced by CCl(4), which may be due to inhibition of oxidative stress and inflammatory responses.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center