Format

Send to

Choose Destination
See comment in PubMed Commons below
Lipids Health Dis. 2011 Oct 31;10:195. doi: 10.1186/1476-511X-10-195.

Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study.

Author information

1
Department of Physics and Astronomy, College of Science, King Saud University, P,O, 2455, Riyadth 11451, Saudi Arabia. abdelhalimmak@yahoo.com

Abstract

BACKGROUND:

One particularly exciting field of research involves the use of gold nanoparticles (GNPs) in the detection and treatment of cancer cells in the liver. The detection and treatment of cancer is an area in which the light absorption and emission characteristics of GNPs have become useful. Currently, there are no data available regarding the fluorescence spectra or in vivo accumulation of nanoparticles (NPs) in rat liver after repeated administration. In an attempt to characterise the potential toxicity or hazards of GNPs in therapeutic or diagnostic use, the present study measured fluorescence spectra, bioaccumulation and toxic effects of GNPs at 3 and 7 days following intraperitoneal administration of a 50 μl/day dose of 10, 20 or 50 nm GNPs in rats.

METHODS:

The experimental rats were divided into one normal group (Ng) and six experimental groups (G1A, G1B, G2A, G2B, G3A and G3B; G1: 20 nm; G2: 10 nm; G3: 50 nm; A: infusion of GNPs for 3 days; B: infusion of GNPs for 7 days). A 50 μl dose of GNPs (0.1% Au by volume) was administered to the animals via intraperitoneal injection, and fluorescence measurements were used to identify the toxicity and tissue distribution of GNPs in vivo. Seventy healthy male Wistar-Kyoto rats were exposed to GNPs, and tissue distribution and toxicity were evaluated after 3 or 7 days of repeated exposure.

RESULTS:

After administration of 10 and 20 nm GNPs into the experimental rats, two fluorescence peaks were observed at 438 nm and 487 nm in the digested liver tissue. The fluorescence intensity for 10 and 20 nm GNPs (both first and second peaks) increased with the infusion time of GNPs in test rats compared to normal rats. The position of the first peak was similar for G1A, G2A, G1B, G2B, G3B and the normal (438 nm); that for G3A was shifted to a longer wavelength (444 nm) compared to the normal. The position of the second peak was similar for G1A, G1B, G2A, G2B and the control (487 nm), while it was shifted to a shorter wavelength for G3A (483 nm) and G3B (483 nm). The fluorescence intensity of the first and second peaks increased for G1A, G2A, G1B and G2B, while it decreased for G3A and G3B compared to the control.

CONCLUSIONS:

The fluorescence intensity of GNPs varied with the number, size and shape of particles and with the ratio of surface area to volume in a given sample. Fluorescence intensity changes during infusion depended on the size and shape of GNPs, with smaller particles experiencing larger changes during the infusion time in addition to the quenching produced by the larger GNPs. It is likely that smaller particles, which have a much higher ratio of surface area to volume compared to larger particles, are more prone to aggregation and surface interaction with biological components. This study suggests that fluorescence intensity can be used to evaluate bioaccumulation and the toxicity of gold nanoparticles in rats.

PMID:
22040092
PMCID:
PMC3219743
DOI:
10.1186/1476-511X-10-195
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center