Format

Send to

Choose Destination
J Bacteriol. 1990 Sep;172(9):4888-900.

Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12.

Author information

1
New England Biolabs, Beverly, Massachusetts 01915.

Abstract

The mcrB (rglB) locus of Escherichia coli K-12 mediates sequence-specific restriction of cytosine-modified DNA. Genetic and sequence analysis shows that the locus actually comprises two genes, mcrB and mcrC. We show here that in vivo, McrC modifies the specificity of McrB restriction by expanding the range of modified sequences restricted. That is, the sequences sensitive to McrB(+)-dependent restriction can be divided into two sets: some modified sequences containing 5-methylcytosine are restricted by McrB+ cells even when McrC-, but most such sequences are restricted in vivo only by McrB+ McrC+ cells. The sequences restricted only by McrB+C+ include T-even bacteriophage containing 5-hydroxymethylcytosine (restriction of this phage is the RglB+ phenotype), some sequences containing N4-methylcytosine, and some sequences containing 5-methylcytosine. The sequence codes for two polypeptides of 54 (McrB) and 42 (McrC) kilodaltons, whereas in vitro translation yields four products, of approximately 29 and approximately 49 (McrB) and of approximately 38 and approximately 40 (McrC) kilodaltons. The McrB polypeptide sequence contains a potential GTP-binding motif, so this protein presumably binds the nucleotide cofactor. The deduced McrC polypeptide is somewhat basic and may bind to DNA, consistent with its genetic activity as a modulator of the specificity of McrB. At the nucleotide sequence level, the G+C content of mcrBC is very low for E. coli, suggesting that the genes may have been acquired recently during the evolution of the species.

PMID:
2203735
PMCID:
PMC213143
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center