Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2011 Dec 21;133(50):20521-7. doi: 10.1021/ja208687a. Epub 2011 Nov 23.

Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic.

Author information

1
Laboratoire PECSA, UMR 7195, CNRS et UPMC-Paris 6, 4 pl. Jussieu, F-75005 Paris, France. benjamin.rotenberg@upmc.fr

Abstract

While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure.

PMID:
22035164
PMCID:
PMC3249429
DOI:
10.1021/ja208687a
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center