Send to

Choose Destination
See comment in PubMed Commons below
Plast Reconstr Surg. 2011 Nov;128(5):451e-459e. doi: 10.1097/PRS.0b013e31822b65c7.

An activin receptor-like kinase 5 inhibitor reduces collagen deposition in a rat dermal incision wound healing model.

Author information

Pfizer Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, USA.



Excessive dermal scarring is characterized by an overabundant deposition of extracellular matrix caused by fibrosis. The purpose of this study was to modify a rodent model of cutaneous healing for use in the development of compounds to minimize scarring, and to test the model with a small molecule inhibitor of transforming growth factor-β type I receptor, activin receptor-like kinase 5, because this class of inhibitors has been demonstrated to be effective in minimizing fibrosis in other organs.


The rodent model of cutaneous healing consists of uniform full-thickness incisional dermal wounds in rats. Wounds were allowed to heal by secondary intention, generally over a 14-day period. The usefulness of the model was tested by the application of an activin receptor-like kinase 5 inhibitor, CP-639180. Activin receptor-like kinase 5 inhibition antagonizes the transforming growth factor-β pathway, and was used to determine whether there was an effect on collagen deposition in wounds. The compound was applied once per day for 7 days starting at postwounding day 0 or 7 (early or late treatment regimens). Wounds were analyzed histologically for collagen deposition and biochemically for quantification of collagen changes.


Early and late treatment regimens with the activin receptor-like kinase 5 inhibitor significantly reduced collagen deposition without impairing wound healing.


Application of a small molecular inhibitor of activin receptor-like kinase 5 appears to significantly reduce collagen deposition in rat dermal wounds as reported here for the first time. Activin receptor-like kinase 5 inhibition may offer a novel approach to reducing proliferative scars in humans because collagen accumulation is a core event in scarring.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Wolters Kluwer
    Loading ...
    Support Center