Format

Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2012 Apr;165(8):2771-86. doi: 10.1111/j.1476-5381.2011.01756.x.

Investigation of mechanism of drug-induced cardiac injury and torsades de pointes in cynomolgus monkeys.

Author information

1
Celgene Corporation, San Diego, CA, USA.

Abstract

BACKGROUND AND PURPOSE:

Drug candidates must be thoroughly investigated for their potential cardiac side effects. During the course of routine toxicological assessment, the compound RO5657, a CCR5 antagonist, was discovered to have the rare liability of inducing torsades de pointes (polymorphic ventricular arrhythmia) in normal, healthy animals. Studies were conducted to determine the molecular mechanism of this arrhythmia.

EXPERIMENTAL APPROACH:

Toxicological effects of repeat dosing were assessed in naïve monkeys. Cardiovascular effects were determined in conscious telemetry-implanted monkeys (repeat dosing) and anaesthetized instrumented dogs (single doses). Mechanistic studies were performed in guinea-pig isolated hearts and in cells recombinantly expressing human cardiac channels.

KEY RESULTS:

In cynomolgus monkeys, RO5657 caused a low incidence of myocardial degeneration and a greater incidence of ECG abnormalities including prolonged QT/QTc intervals, QRS complex widening and supraventricular tachycardia. In telemetry-implanted monkeys, RO5657 induced arrhythmias, including torsades de pointes and in one instance, degeneration to fatal ventricular fibrillation. RO5657 also depressed both heart rate (HR) and blood pressure (BP), with no histological evidence of myocardial degeneration. In the anaesthetized dog and guinea-pig isolated heart studies, RO5657 induced similar cardiovascular effects. RO5657 also inhibited Kv11.1 and sodium channel currents.

CONCLUSIONS AND IMPLICATIONS:

The molecular mechanism of RO5657 is hypothesized to be due to inhibition of cardiac sodium and Kv11.1 potassium channels. These results indicate that RO5657 is arrhythymogenic due to decreased haemodynamic function (HR/BP), decreased conduction and inhibition of multiple cardiac channels, which precede and are probably the causative factors in the observed myocardial degeneration.

PMID:
22029876
PMCID:
PMC3423261
DOI:
10.1111/j.1476-5381.2011.01756.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center