Send to

Choose Destination
See comment in PubMed Commons below
Lipids Health Dis. 2011 Oct 25;10:189. doi: 10.1186/1476-511X-10-189.

Pollock oil supplementation modulates hyperlipidemia and ameliorates hepatic steatosis in mice fed a high-fat diet.

Author information

Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd,, 32-3 Nanakuni 1 Chome Hachioji, Tokyo 192-0991, Japan.



Hyperlipidemia associated with obesity is closely related to the development of atherosclerosis. Both n-3 polyunsaturated fatty acids (PUFAs) and long-chain monounsaturated fatty acids (MUFAs; i.e., C20:1 and C22:1 isomers) supplementation modulate risk factors for metabolic syndrome via multiple mechanisms, including the restoration of impaired lipid metabolism. We therefore examined the effects of pollock oil, which contains a considerable amount of n-3 PUFAs as well as long-chain MUFAs, on plasma hyperlipidemia and hepatic steatosis in diet-induced obese mice.


Male C57BL/6J mice (24-26 g) were divided into two groups (n = 10/group) and were fed a high-fat diet containing 32% lard (control group) or 17% lard plus 15% pollock oil (experimental group) for 6 weeks. For both groups, fat comprised 60% of the total caloric intake.


Although body and liver masses for the two groups did not differ significantly, hepatic lipids concentrations (triglycerides and total cholesterols) were lower (P < 0.05) after pollock oil ingestion. After 2 weeks on the specified diets, plasma lipid levels (total cholesterol, LDL cholesterol, and triglycerides) significantly decreased (P < 0.05) in the experimental group compared with the control group, although plasma HDL cholesterol levels did not differ. At the end of 6 weeks, plasma adiponectin levels increased (P < 0.05), whereas plasma resistin and leptin levels decreased (P < 0.05) in the experimental mice. Increased levels of long-chain MUFAs and n-3 PUFAs in plasma, liver and adipose tissue by ingesting pollock oil were possibly correlated to these favorable changes. Expression of hepatic genes involved in cholesterol metabolism (SREBP2, HMGCR, and ApoB) and lipogenesis (SREPB1c, SCD-1, FAS, and Acacα) was suppressed in the experimental group, and may have favorably affected hyperlipidemia and hepatic steatosis induced by the high-fat diet.


We demonstrated that pollock oil supplementation effectively improved hyperlipidemia, attenuated hepatic steatosis, and downregulated the express of hepatic genes involved in cholesterol and lipid metabolism in mice with diet-induced obesity.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center