Send to

Choose Destination
See comment in PubMed Commons below
J Environ Radioact. 2012 Sep;111:65-9. doi: 10.1016/j.jenvrad.2011.09.017. Epub 2011 Oct 24.

Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues.

Author information

Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.


An accident occurred at the Fukushima Dai-ichi Nuclear Power Plant in March 2011 at which time large amounts of radionuclides were released into the atmosphere and the sea. In early May 2011, it was found that newly emerged tea (Camellia sinensis) leaves contained radiocesium, both (134)Cs and (137)Cs in some areas more than 300 km away from the Fukushima plant. To understand the mechanisms of radiocesium transfer to newly emerged tissues (shoots, leaves and fruits) of other plants in the future, radiocesium concentrations in newly emerged leaves of 14 plant species collected from the sampling areas in and near National Institute of Radiological Sciences in Chiba, Japan. The studied plant types were: (1) herbaceous plants, (2) woody plants with no old leaves at the time of the March accident, and (3) woody plants with old leaves out before the accident. About 40-50 d after the start of the accident, newly emerged leaves from woody plant with old leaves tended to show higher values than other woody or herbaceous plants. Concentrations of radiocesium in newly emerged tissues of trees decreased with time, but they did not decrease to the level of herbaceous plants. The type of the plant and presence of old leaves at the time of the heavy deposition period affected the radiocesium concentrations in newly emerged tissues.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center