Format

Send to

Choose Destination
PLoS One. 2011;6(10):e26218. doi: 10.1371/journal.pone.0026218. Epub 2011 Oct 14.

Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites.

Author information

1
Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. dp350@cam.ac.uk

Abstract

Ca(2+) channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca(2+) release channels: inositol 1,4,5-trisphosphate receptors (IP(3)Rs), ryanodine receptors (RyRs), two-pore Ca(2+) channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP(3)R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP(3)R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca(2+) influx channels, including voltage-gated Ca(2+) channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca(2+) channel and STIM Ca(2+) sensor homologues, suggesting that store-operated Ca(2+) entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca(2+) homeostasis and some are known modulators of mammalian Ca(2+) channels, suggesting that parasite Ca(2+) channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca(2+) channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect.

PMID:
22022573
PMCID:
PMC3194816
DOI:
10.1371/journal.pone.0026218
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center