Format

Send to

Choose Destination
Biochim Biophys Acta. 2012 May;1822(5):737-47. doi: 10.1016/j.bbadis.2011.10.005. Epub 2011 Oct 12.

Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols.

Author information

1
Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5-00185 Rome, Italy.

Abstract

Cervical cancer lesions are a major threat to the health of women, representing the second most common cancer worldwide. The unanimously recognized etiological factor in the causation of cervical cancer is the infection with human papilloma virus (HPV). HPV infection, although necessary, is not per se sufficient to induce cancer. Other factors have to be involved in the progression of infected cells to the full neoplastic phenotype. Oxidative stress represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. Oxidative stress is known to perturb the cellular redox status thus leading to alteration of gene expression responses through the activation of several redox-sensitive transcription factors. This signaling cascade affects both cell growth and cell death. The ability of naturally occurring antioxidants to modulate cellular signal transduction pathways, through the activation/repression of multiple redox-sensitive transcription factors, has been claimed for their potential therapeutic use as chemopreventive agents. Among these compounds, polyphenols have been found to be promising agents toward cervical cancer. In addition to acting as antioxidants, polyphenols display a wide variety of biological function including induction of apoptosis, growth arrest, inhibition of DNA synthesis and modulation of signal transduction pathways. They can interfere with each stage of carcinogenesis initiation, promotion and progression to prevent cancer development. The present review discusses current knowledge of the major molecular pathways, which are involved in HPV-driven cancerogenesis, and the ability of polyphenols to modulate these pathways. By acting at specific steps of viral transformation cascade, polyphenols have been demonstrated to selectively inhibit tumor cell growth and may be a promising therapeutic tool for treatment of cervical cancer. In addition, recent results obtained in clinical trials using polyphenols are also discussed. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.

PMID:
22019724
DOI:
10.1016/j.bbadis.2011.10.005
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center