Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2011 Oct 19;31(42):14931-43. doi: 10.1523/JNEUROSCI.3339-11.2011.

Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system.

Author information

1
Department of Pharmacological Sciences, Stony Brook University, New York, NY 11794-8651, USA.

Abstract

Spinal cord injury (SCI) causes permanent debilitation due to the inability of axons to grow through established scars. Both the sugar chains and core proteins of chondroitin sulfate proteoglycans (CSPGs) are inhibitory for neurite regrowth. Chondroitinase ABC (ChABC) degrades the sugar chains and allows for synaptic plasticity, suggesting that after the sugar chain cleavage additional steps occur promoting a permissive microenvironment in the glial scar region. We report that the clearance of the core protein by the tissue plasminogen activator (tPA)/plasmin proteolytic system partially contributes to ChABC-promoted plasticity. tPA and plasmin are upregulated after SCI and degrade the deglycosylated CSPG proteins. Mice lacking tPA (tPA(-/-)) exhibit attenuated neurite outgrowth and blunted sensory and motor recovery despite ChABC treatment. Coadministration of ChABC and plasmin enhanced the tPA(-/-) phenotype and supported recovery in WT SCI mice. Collectively, these findings show that the tPA/plasmin cascade may act downstream of ChABC to allow for synergistic sensory and motor improvement compared with each treatment alone and suggest a potential new approach to enhance functional recovery after SCI.

PMID:
22016526
PMCID:
PMC3206287
DOI:
10.1523/JNEUROSCI.3339-11.2011
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center