Format

Send to

Choose Destination
Mol Biosyst. 2011 Dec;7(12):3353-65. doi: 10.1039/c1mb05316g. Epub 2011 Oct 19.

Intrinsic disorder of the extracellular matrix.

Author information

1
Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.

Abstract

The extracellular matrix is very well organized at the supramolecular and tissue levels and little is known on the potential role of intrinsic disorder in promoting its organization. We predicted the amount of disorder and identified disordered regions in the human extracellular proteome with established computational tools. The extracellular proteome is significantly enriched in proteins comprising more than 50% of disorder compared to the complete human proteome. The enrichment is mostly due to long disordered regions containing at least 100 consecutive disordered residues. The amount of intrinsic disorder is heterogeneous in the extracellular protein families, with the most disordered being collagens and the small integrin-binding ligand N-linked glycoproteins. Although most domains found in extracellular proteins are structured, the fibronectin III domains contain a variable amount of disordered residues (up to 92%). Binding sites for heparin and integrins are found in disordered sequences of extracellular proteins. Intrinsic disorder is evenly distributed in hubs and ends in the interaction network of extracellular proteins with their extracellular partners. In contrast, extracellular hubs are significantly enriched in disorder in the network of extracellular proteins with their extracellular, membrane and intracellular partners. Disorder could thus provide the structural plasticity required for the hubs to interact with membrane and intracellular proteins. Organization and assembly of the extracellular matrix, development of mineralized tissues and cell-matrix adhesion are the biological processes overrepresented in the most disordered extracellular proteins. Extracellular disorder is associated with binding to growth factors, glycosaminoglycans and integrins at the molecular level.

PMID:
22009114
DOI:
10.1039/c1mb05316g
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center