Format

Send to

Choose Destination
Int J Colorectal Dis. 2012 Feb;27(2):221-5. doi: 10.1007/s00384-011-1324-3. Epub 2011 Oct 18.

Low current electrical stimulation upregulates cytokine expression in the anal sphincter.

Author information

1
Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, USA.

Abstract

AIM:

Stem cells are an emerging treatment for regeneration of damaged anal sphincter tissues. Homing to the site of injury can be potentiated by stromal derived factor 1 (SDF-1) and monocyte chemotactic protein 3 (MCP-3) expression. The effects of electrical stimulation (ES) on upregulation of these cytokines were investigated.

METHODS:

The anal sphincter complex of Sprague Dawley rats was stimulated with current of 0.25 mA, pulse duration of 40 pulses/s, pulse width of 100 μs, and frequency of 100 Hz for 1 or 4 h. Sham was created using the same needle which was inserted into the anal sphincter without electrical stimulation in different groups of animals. The rats were euthanized immediately or 24 h after stimulation. Cytokine analysis was performed using real-time polymerase chain reaction. Statistical analysis was performed.

RESULTS:

Results are presented as a fold increase compared to sham that was normalized to 1. SDF-1 and MCP-3 immediately after 1 h were 2.5 ± 0.77 and 3.1± 0.93 vs. sham, respectively, showing significant increase. After 1-h stimulation and euthanasia 24 h after, SDF-1 and MCP-3 were 1.49 ± 0.16 and 1.51± 0.14 vs. sham, respectively, showing significant increase. Immediately and 24 h after 4-h stimulation, SDF-1 was 1.21 ± 0.16 and 0.54 ± 0.16 vs. sham, respectively, and was not significantly different. Immediately and 24 h after 4-h stimulation, MCP-3 was 1.29 ± 0.41 and 0.35 ±1.0 vs. sham, respectively, and was not significantly different. SDF-1 and MCP-3 after 1 h were significantly higher than after 4 h of stimulation at both time points.

CONCLUSION:

Electrical stimulation for 1 h significantly upregulates SDF-1 and MCP-3 expression that persists for 24 h. Prolonged stimulation reduced chemokine expression, suggesting electrolysis of cells.

PMID:
22006493
DOI:
10.1007/s00384-011-1324-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center